Potential Theory and Nonlinear Elliptic Equations Lecture 2

I. E. Verbitsky

University of Missouri, Columbia, USA

Nankai University, Tianjing, China June 2021

K ロ ▶ K 레 ▶ K 리 ▶ K 리 리 ▶ 이 리 리 이 이 이 이 리 리

Publications

- ¹ A. Grigor'yan and I. Verbitsky, *Pointwise estimates of solutions to nonlinear equations for non-local operators*, *Ann. Scuola Norm. Super. Pisa*, 20 (2020) 721–750
- ² A. Grigor'yan and I. Verbitsky, *Pointwise estimates of solutions to semilinear elliptic equations and inequalities*, *J. D*0 *Analyse Math.*, 137 (2019) 529–558
- ³ A. Grigor'yan and W. Hansen, *Lower estimates for a perturbed Green function, J. D*0 *Analyse Math.*, 104 (2008), 25–58.
- ⁴ N. Kalton and I. Verbitsky, *Nonlinear equations and weighted norm inequalities*, *Trans. Amer. Math. Soc.* 351 (1999), 3441–3497.
- **6** H. Brezis and X. Cabré, *Some simple nonlinear PDE's without solutions*, *Boll. Unione Mat. Ital.*, 8, Ser. 1-B (1998) 223–262.

 Ω

◀ ㅁ ▶ ◀ 何 ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로

Additional literature

- ¹ J. L. Doob, *Classical Potential Theory and Its Probabilistic Counterpart,* Classics in Math., Springer, New York –Berlin–Heidelberg–Tokyo, 2001 (Reprint of the 1984 ed.)
- ² A. Grigor'yan, *Heat Kernel and Analysis on Manifolds*, Amer. Math.Soc./Intern. Press Studies in Adv. Math., 47, 2009.
- ³ N. S. Landkof, *Foundations of Modern Potential Theory*, Grundlehren der math. Wissenschaften, 180, Springer, New York–Heidelberg, 1972.

 Ω

A → → 로 → → 로 → 트

The Laplace-Beltrami operator

Recall that the gradient operator ∇ is defined by

$$
(\nabla u)^i = \sum_{j=1}^n g^{ij} \partial_{x_j} u.
$$

The divergence operator div on vector fields *Fⁱ* is defined by

$$
\mathrm{div}\boldsymbol{F}=\frac{1}{\sqrt{\det g}}\sum_{i=1}^n \partial_{x_i}\left(\sqrt{\det g}\,\boldsymbol{F}^i\right).
$$

The Laplace-Beltrami operator \mathcal{L}_0 is represented in the form

$$
\mathcal{L}_0=\mathrm{div}\circ\nabla.
$$

G.

 Ω

The weighted Laplace operator

Let (M, m) be a weighted manifold with $dm = \omega dm_0$. The weighted divergence operator is defined by

$$
\mathrm{div}_\omega=\frac{1}{\omega}\circ\mathrm{div}\circ\omega.
$$

Recall that ∇ and div are the Riemannian gradient and divergence, respectively, and do not depend on the weight ω .

The (weighted) Laplace operator $\mathcal{L} = \mathbf{\Delta}$ is defined by $\mathbf{\Delta} = \text{div}_{\omega} \circ \nabla$. From the definitions of ∇ and div, it follows that

$$
\Delta u = -\frac{1}{\omega} \text{div}(\omega \nabla u) = \frac{1}{\omega \sqrt{\det g}} \sum_{i,j=1}^{n} \partial_{x_i} \left(\omega \sqrt{\det g} \, g^{ij} \partial_{x_j} u \right), \quad (1)
$$

acting on *C*² functions *u* on *M*.

 Ω

 $\blacktriangleleft \overline{\blacksquare}$ \blacktriangleright $\blacktriangleleft \overline{\mathbb{B}}$ \blacktriangleright $\blacktriangleleft \overline{\mathbb{B}}$ \blacktriangleright \blacksquare \blacksquare

Example (elliptic differential operators in \mathbb{R}^n)

In an open set $\Omega \subseteq \mathbb{R}^n$ consider the operator

$$
Lu = b(x) \sum_{i,j=1}^{n} \partial_{x_i} (a_{ij}(x) \partial_{x_j} u), \qquad (2)
$$

where \bm{b} , $\bm{A} = (\bm{a}_{ij})$ are smooth functions, and $\bm{b} > \bm{0}$.

We assume here that the matrix *A*(*x*) is symmetric and positive definite for any $x \in \Omega$.

In other words, the operator L is elliptic (the uniform ellipticity is not needed).

 Ω

K □ ▶ K 何 ▶ K 言 ▶ K 言 ▶ │ 言 │

Example (elliptic differential operators in \mathbb{R}^n) (continuation)

We claim that L coincides with the *weighted* Laplace operator Δ on $\Omega \subset \mathbb{R}^n$ with the Riemannian metric g and weight ω chosen so that

$$
\left(g^{ij}\right) = b\left(a_{ij}\right), \qquad \omega = b^{\frac{n}{2}-1} \sqrt{\det A}.
$$
 (3)

Clearly,

$$
\det g = \det (g_{ij}) = \frac{1}{b^n \det A}.
$$
 (4)

The measure $dm = \omega dm_0$ associated with Δ is given by

$$
dm = \omega \sqrt{\det g} \, dx = b^{\frac{n}{2}-1} \sqrt{\det A} \frac{1}{\sqrt{b^n \det A}} \, dx = \frac{1}{b} \, dx, \qquad (5)
$$

where *dx* is Lebesgue measure.

 OQ

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 『 로

Example (elliptic differential operators in \mathbb{R}^n) (continuation)

Recall that by (1) , we have

$$
\Delta u = \frac{1}{\omega \sqrt{\det g}} \sum_{i,j=1}^{n} \partial_{x_i} \left(\omega \sqrt{\det g} \, g^{ij} \partial_{x_j} u \right). \tag{6}
$$

Substituting (3), (4) into (6) yields

$$
\Delta u = \frac{\sqrt{b^n \det A}}{b^{\frac{n}{2}-1} \sqrt{\det A}} \sum_{i,j=1}^n \partial_{x_i} \left(b^{\frac{n}{2}-1} \sqrt{\det A} \frac{1}{\sqrt{b^n \det A}} b a^{ij} \partial_{x_j} u \right)
$$

= $b \sum_{i,j=1}^n \partial_{x_i} (a_{ij}(x) \partial_{x_j} u) = Lu.$

Therefore, the results below for a general weighted manifold (*M, m*), are applicable to the operator **L** in $\Omega \subset \mathbb{R}^n$ with the measure m. In particular, if $b \equiv 1$, then $L = \text{div}(A\nabla \cdot)$ and m is Lebesgue measure. DQ

The Doob transform

Given a positive C^2 function h in $\Omega \subseteq M$, consider the following operator,

$$
L^h=\frac{1}{h}\circ\Delta\circ h
$$

acting on $C^2(\Omega)$. The operator L^h is called the Doob transform of Δ . Usually it is used for harmonic functions *h*, but we use *L^h* for superharmonic *h* as well [Grigor'yan-Verbitsky 2019]. Notice that *L^h* can be written in the form

$$
L^h v = \Delta^h v + \frac{\Delta h}{h} v, \qquad (7)
$$

where $v \in C^2(\Omega)$ and Δ^h is the *h*-Laplacian defined by

$$
\Delta^h v = \frac{1}{h^2} \text{div}_{\omega} (h^2 \nabla v).
$$
 (8)

Note that Δ^h is the Laplace operator for the measure $h^2 dm = h^2 \omega dm_0$.

Green functions

Recall that, for a general weight ω , the Laplace operator $\mathcal{L} = \mathbf{\Delta}$ is *symmetric* with respect to the measure m . Moreover, Δ satisfies the Chain Rule and the Product Rule, like in the case $\omega = 1$, when $\Delta = \mathcal{L}_0$ is the Laplace-Beltrami operator.

For any open connected set $\Omega \subseteq M$, we denote by $G^{\Omega}(x, y)$ the infimum of all positive fundamental solutions of Δ in Ω .

Then the following is true:

either $G^{\Omega}(x, y) \equiv +\infty$ or $G^{\Omega}(x, y) < +\infty$ for all $x \neq y$.

In the latter case we will say that G^{Ω} is *non-trivial*, and call G^{Ω} the *minimal Green function* (positive, symmetric) of Δ in Ω .

The existence of a non-trivial G^{Ω} is the only assumption on Ω that we impose.

K □ ▶ K fी ▶ K 로 ▶ K 로 ▶ _ 도 _ K 이 Q (Q

Green potentials

If G^{Ω} is the non-trivial minimal Green function, then for any $\mu \in \mathcal{M}^+(\Omega)$, the Green potential $G^{\Omega} \mu$ is defined by

$$
G^{\Omega} \mu (x) = \int_{\Omega} G^{\Omega} (x, y) d\mu (y).
$$

For a nonnegative $f \in L^1_{\rm loc} \left(\Omega, m \right)$, we set ${\rm G}^{\Omega} f := {\rm G}^{\Omega} (f \ dm)$. For a signed function $f \in L^1_{\text{loc}}(\Omega, m)$,

$$
G^{\Omega} f(x) = G^{\Omega} f_{+}(x) - G^{\Omega} f_{-}(x)
$$

assuming at least one of the following:

$$
G^{\Omega}f_{+}(x) < +\infty, \text{ or } G^{\Omega}f_{-}(x) < +\infty.
$$

Then $G^{\Omega}f(x)$ is said to be **well-defined**.
Remark. If Ω is relatively compact then G^{Ω} is non-trivial,
 $G^{\Omega}(x, \cdot) \in L^{1}(\Omega)$, and $G^{\Omega}f$ is finite for any $f \in L^{\infty}(\Omega)$.

Local case: semi-linear inequalities

(with boundary conditions)

Our main goal is to obtain "sharp" pointwise estimates of positive sub/super-solutions to the following model semi-linear problem.

Problem. Let $\Omega \subset M$ be an open relatively compact connected subdomain of M . Given $V \in C(\overline{\Omega})$, $\mu \in C\left(\overline{\Omega}\right)$, $\nu \in C(\partial \Omega)$, $\mu, \nu \geq 0$, *assume* that there exists a *nonnegative* solution *u* to the following semi-linear Dirichlet problem:

$$
\begin{cases}\n-\Delta u + V u^q \ge \mu & \text{in } \Omega \\
u \ge \nu & \text{in } \partial\Omega,\n\end{cases}
$$
\n(9)

if $q > 0$, and $\int -\Delta u + V u^q \leq \mu$ in Ω $u \leq \nu$ in $\partial \Omega$, (10)

if $q < 0$. $\textsf{Remark. Here } u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a *classical* solution. **A BAY B** OQ

The auxiliary linear Dirichlet problem

Remark. Analogues for **general** domains $\Omega \subset M$ (not necessarily relatively compact) and **non-smooth** coefficients/data are discussed below.

We will compare *u* to the solution *h* of the following *auxiliary* linear Dirichlet problem:

$$
\begin{cases}\n-\Delta h = \mu & \text{in } \Omega, \\
h = \nu & \text{in } \partial \Omega,\n\end{cases}
$$

where $h \geq 0$ is *superharmonic* in Ω ($\mu, \nu \geq 0$), for regular domains Ω . We will write

$$
h = P^{\Omega} \nu + G^{\Omega} \mu.
$$

For smooth domains $P^{\Omega} \nu$ and $G^{\Omega} \mu$ are given by the Poisson and Green integrals respectively.

 Ω

K ロ ▶ K @ ▶ K 호 ▶ K 호 ▶ │ 호 │

Main results: local case

Theorem 3 (Grigor'yan-Verbitsky 2019)

Let (M, m) *be a weighted manifold,* $\Omega \subset M$ *an open relatively compact* $\mathsf{subdomain\ of\ }M$, $\partial\Omega$ regular, $\mathsf{V}\in\mathsf{C}(\overline{\Omega})$, $\mu\in\mathsf{C}\left(\overline{\Omega}\right)$, $\nu\in\mathsf{C}(\partial\Omega)$, $\mu, \nu > 0$, μ locally Hölder continuous, either $\mu \not\equiv 0$ or $\nu \not\equiv 0$, which *ensures that* $h > 0$ *in* Ω . $Suppose \; \pmb{u} \in \pmb{C^2(\Omega)} \cap \pmb{C}\left(\overline{\Omega}\right)$ is a non-negative super-solution to (9) if $q > 0$, or sub-solution to (10) if $q < 0$. *Then the following statements hold for all* $x \in \Omega$. *(i)* If $q = 1$ *, then*

$$
u(x) \geq h(x)e^{-\frac{1}{h(x)}G^{\Omega}(hV)(x)}.
$$
 (11)

◀ㅁ▶ ◀♬▶ ◀롣▶ ◀롣▶ │ 롣│ ⊙٩⊙

Main results: local case (continuation)

Theorem 3 (statements (ii), (iii))

(ii) If $q > 1$ *, then* necessarily *the condition*

$$
-(q-1) G^{\Omega}(h^q V)(x) < h(x) \qquad (12)
$$

holds in Ω *, and*

$$
u(x) \geq h(x) \left[1 + (q-1) \frac{G^{\Omega}(h^q V)(x)}{h(x)} \right]^{-\frac{1}{q-1}}.
$$
 (13)

(iii) If $0 < q < 1$, then

$$
u(x) \geq h(x)\left[1-(1-q)\frac{G^{\Omega}(\chi_{\Omega^+}h^qV)(x)}{h(x)}\right]_+^{\frac{1}{1-q}}, \qquad (14)
$$

 $where \Omega^+ = \{x \in \Omega : u(x) > 0\}.$

Main results: local case (continuation)

Theorem 3 (statement (iv))

(iv) If $q < 0$ *and* $u > 0$ *in* Ω *then* **necessarily** *the condition*

$$
(1-q) G^{\Omega}(h^q V)(x) < h(x), \qquad (15)
$$

holds in Ω *, and*

$$
u(x) \leq h(x) \left[1-(1-q)\frac{G^{\Omega}(h^qV)(x)}{h(x)}\right]^{\frac{1}{1-q}}, \qquad (16)
$$

provided $G^{\Omega}(h^q V)(x)$ *is well-defined.*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q ⊙

Inequalities for $L^h v$; $v = \phi^{-1}$ ⇣ *u h* \overline{a} , ϕ increasing

Lemma (inequalities for the Doob transform)

Let **h** be a positive C^2 -function in Ω . Let **u** be a solution of

$$
-\Delta u + V u^q \geq -\Delta h \tag{17}
$$

in Ω , where $V \in C(\Omega)$ and $q \in \mathbb{R} \setminus \{0\}$. Let ϕ be a C^2 function on an int $I \subset \mathbb{R}$ *such that* $\phi' > 0$ *in I*. Assume $\frac{u}{h}(\Omega) \subset \phi(I)$. *Then* $v = \phi^{-1} \left(\frac{u}{h} \right)$ *atisfies the differential inequality:*

$$
-L^h v + h^{q-1} V \frac{\phi(v)^q}{\phi'(v)} \ge L^h 1 \left(\frac{\phi(v)-1}{\phi'(v)} - v \right) + \frac{\phi''(v)}{\phi'(v)} |\nabla v|^2. (18)
$$

If in place of (17) we have

$$
-\Delta u + Vu^{q} \leq -\Delta h, \qquad (19)
$$

then (18) holds with \lt *instead of* \gt .

Recall that
$$
L^h = \frac{1}{h} \circ \Delta \circ h
$$
. In particular, $L^h 1 = \frac{\Delta h}{h}$.
Set $\tilde{u} = \frac{u}{h}$, so that $L^h \tilde{u} = \frac{1}{h} \Delta u$. Divide both sides of (17) by h :

$$
-L^h \tilde{u} + h^{q-1} V \tilde{u}^q \ge -L^h 1.
$$
 (20)

By the Chain Rule, for any $v \in C^2(\Omega)$

$$
\Delta^h \phi(v) = \phi'(v) \Delta^h v + \phi''(v) |\nabla v|^2.
$$

By (7) applied to $\tilde{u} = \phi(v)$, we have $L^h \tilde{u} = \Delta^h \tilde{u} + \frac{\Delta h}{h} \tilde{u}$. Hence,

$$
L^{h}\phi(v) = \Delta^{h}\phi(v) + \frac{\Delta h}{h}\phi(v)
$$

= $\phi'(v)\Delta^{h}v + \phi''(v)|\nabla v|^{2} + \frac{\Delta h}{h}\phi(v)$
= $\phi'(v)(\Delta^{h}v + \frac{\Delta h}{h}v) + \phi''(v)|\nabla v|^{2} + \frac{\Delta h}{h}(\phi(v) - v\phi'(v))$
= $\phi'(v)L^{h}v + \phi''(v)|\nabla v|^{2} + \frac{\Delta h}{h}(\phi(v) - v\phi'(v)).$

End of the proof

Therefore, solving for *Lhv*, we have

$$
- L^h v = -\frac{L^h \phi(v)}{\phi'(v)} + \frac{\phi''(v)}{\phi'(v)} |\nabla v|^2 + \frac{\Delta h}{h} \left(\frac{\phi(v)}{\phi'(v)} - v \right). \tag{21}
$$

Since $\tilde{u} = \phi(v)$, it follows that (20) yields the following estimate:

$$
-L^h\phi(v)+h^{q-1}V\phi(v)^q\geq -L^h1.
$$

Substituting this inequality into (21), we get rid of $L^h\phi(v)$:

$$
-L^h v + h^{q-1}V\frac{\phi(v)^q}{\phi'(v)} \geq L^h 1\left(\frac{\phi(v)-1}{\phi'(v)}-v\right)+\frac{\phi''(v)}{\phi'(v)}|\nabla v|^2.
$$

This proves the desired inequality for *Lhv*.

The converse inequality with \leq in place \geq is proved in the same way.

 OQ

(□) (何) (□) (□) (□)

Inequalities for
$$
\Delta(hv)
$$
; $v = \phi^{-1}(\frac{u}{h})$

 ϕ increasing, convex

Corollary (superharmonic *h*)

Under the hypotheses of the Lemma, assume in addition $\Delta h \leq 0$ *in* Ω and $0 \in I$ *. (i)* If ϕ is convex in the interval **I**, so that

$$
\phi(0) = 1, \quad \phi' > 0, \quad \phi'' \ge 0,
$$
\n(22)

and *u* satisfies $-\Delta u + V u^q \ge -\Delta h$, then the function $v = \phi^{-1} \left(\frac{u}{h} \right)$ $\overline{)}$ *satisfies the following inequality in* Ω *:*

$$
-\Delta(hv) + h^q V \frac{\phi(v)^q}{\phi'(v)} \ge 0.
$$
 (23)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q @

Inequalities for $\Delta(hv)$; $v = \phi^{-1}$ ⇣ *u h* \overline{a}

 ϕ increasing, concave

Corollary (superharmonic *h*) *(ii)* If ϕ is concave in the interval **I**, so that $\phi(0) = 1, \quad \phi' > 0, \quad \phi'' \leq 0,$ (24) *and u satisfies* $-\Delta u + Vu^q \leq -\Delta h$, then *v satisfies* $-\Delta(hv) + h^qV \frac{\phi(v)^q}{\phi'(v)}$ $\frac{\partial^2 V(\nu)}{\partial \phi'(\nu)} \leq 0.$ (25)

. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations International Mune 2021 21 / 47

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q (연

Proof of the corollary

To prove (i), notice that, for a convex ϕ such that $\phi' > 0$, $\phi(0) = 1$,

$$
\frac{\phi(\mathsf{v})-1}{\phi'(\mathsf{v})}-\mathsf{v}\geq 0,
$$

since the chord of the graph of the convex function ϕ between the points $(0,1)$ and $(v, \phi(v))$ lies above the tangent line at $(v, \phi(v))$. Using also that $L^h 1 = \frac{\Delta h}{h} \leq 0$, we obtain from the Lemma:

$$
-L^h v + h^{q-1} V \frac{\phi(v)^q}{\phi'(v)} \geq 0,
$$

which is equivalent to (23), since $\Delta(hv) = h L^h v$. The proof of statement (ii) is similar.

 Ω

K □ ▶ K 何 ▶ K ∃ ▶ K ∃ ▶ │ ∃ │

A comparison principle for superharmonic functions

The following two lemmas enable us to get rid of some technical assumptions like $inf_{\Omega} h > 0$ initially used in the proofs below.

Lemma (a comparison principle)

Suppose $\Omega \subseteq M$ *is open, and* **F** *is a superharmonic function in* Ω *. Suppose* $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$ *where* lim $\inf_{x \to z} \mathbf{F}_1(x) \geq 0$ *for every* $z \in \partial_{\infty} \Omega$, *and* $F_2 > -P$, where $P = G^{\Omega} \mu$ *is a Green potential of a positive measure* μ *in* Ω , $P \not\equiv +\infty$ *on every component of* Ω *. Then* $F > 0$ *in* Ω *.*

Proof.

The function $F + P$ is obviously superharmonic, and $F + P \geq F_1$. Hence lim inf_{$x\rightarrow z$} $(F + P)(x) \ge 0$ for $z \in \partial_{\infty}\Omega$, and by the maximum principle $F + P > 0$ on Ω . Hence *F* is a superharmonic majorant of $-P$, whose least superharmonic majorant must be zero, which yields $F \geq 0$.

Remark. The case $P = 0$ gives the usual form of the maximum principle.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ │ 결 │

A version of the maximum principle

The following version of the maximum principle will be frequently used below. It is deduced from the previous comparison lemma.

Lemma (a maximum principle)

Let ⌦ *be an open subset of M with non-trivial Greeen's function, and let* $v \in C^2(\Omega)$ *satisfy*

$$
\left\{\n\begin{array}{ll}\n-\Delta v \geq f & \text{in } \Omega, \\
\liminf_{x\to\partial_{\infty}\Omega} v(x) \geq 0,\n\end{array}\n\right.
$$

where $f \in C(\Omega)$ *such that* $G^{\Omega}f$ *is well defined in* Ω *. Then*

$$
\mathbf{v}\left(\mathbf{x}\right)\geq\mathbf{G}^{\Omega}f\left(\mathbf{x}\right),\qquad\forall\mathbf{x}\in\Omega.\tag{26}
$$

G.

 Ω

→ 唐 ▶ → 唐 ▶

Semi-linear problems in "nice" domains under the assumption $inf_{\Omega} h > 0$

Lemma (proof of Theorem 3: $\inf_{\Omega} h > 0$, smooth boundary)

Suppose Ω *is a relatively compact domain in* M *with smooth boundary.* $Suppose \ u \in C^2(\Omega) \cap C\left(\overline{\Omega}\right)$, $\mathsf{V} \in C\left(\overline{\Omega}\right)$, and μ , ν are non-negative $functions such that $\nu \in C(\partial \Omega)$, and $\mu \in C(\overline{\Omega}) \cap C^{\alpha}(\Omega)$ for some$ $\alpha \in (0,1]$ *. Let*

$$
h = P^{\Omega} \nu + G^{\Omega} \mu. \tag{27}
$$

If $\inf_{\Omega} h > 0$, then the following statements hold. *(i)* In the case $q > 0$, if $u > 0$ is a solution of

$$
\begin{cases}\n-\Delta u + Vu^{q} \geq \mu & \text{in } \Omega, \\
u \geq \nu & \text{in } \partial\Omega,\n\end{cases}
$$
\n(28)

then statements (i)-(iii) of Theorem 3 are valid (lower bounds for u).

 Ω

Semi-linear problems in "nice" domains under the assumption $inf_{\Omega} h > 0$

```
Lemma (continuation)
```
(ii) In the case $q < 0$, if $u > 0$ is a solution of

$$
\begin{cases}\n-\Delta u + Vu^{q} \leq \mu & \text{in } \Omega, \\
u \leq \nu & \text{in } \partial\Omega,\n\end{cases}
$$

then statement (iv) of Theorem 3 is valid (upper bounds for u).

Remarks. 1. The technical assumption $\inf_{\Omega} h > 0$ is removed using the maximum principle lemma stated above.

2. The restriction that Ω has a smooth boundary is unnecessary, and will be removed below.

(29)

By the hypotheses, $h \in C^2(\Omega)$, $-\Delta h = \mu$, and $h > 0$ in Ω . Choose the function ϕ in the Corollary to satisfy the equation

$$
\phi'(\mathsf{v}) = \phi(\mathsf{v})^q. \tag{30}
$$

For $q=1$, this gives

$$
\phi(\mathsf{v}) = e^{\mathsf{v}}, \quad \mathsf{v} \in \mathbb{R}, \tag{31}
$$

while for $q \neq 1$, we obtain

$$
\phi(\mathsf{v})=[(1-q)\mathsf{v}+1]^{\frac{1}{1-q}},\quad \mathsf{v}\in I_q,\qquad(32)
$$

where the domain I_q of ϕ is given by:

$$
I_q = \begin{cases} \left(-\frac{1}{1-q}, +\infty\right) & \text{if } q < 1, \\ \left(-\infty, +\infty\right) & \text{if } q = 1, \\ \left(-\infty, \frac{1}{q-1}\right) & \text{if } q > 1. \end{cases}
$$
 (33)

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q (Ŷ

(continuation)

Note that in all cases $\phi(I_q) = (0, \infty)$. Also, we have

$$
\phi'(\nu) = [(1-q)\nu + 1]^{\frac{q}{1-q}}, \quad \phi''(\nu) = q[(1-q)\nu + 1]^{\frac{2q-1}{1-q}}. \quad (34)
$$

Since $u = h\phi(v)$, all the estimates in the case $q > 0$ follow from:

$$
v(x) \geq -\frac{1}{h(x)} G^{\Omega}(h^q V)(x) \text{ for all } x \in \Omega.
$$
 (35)

For $q < 0$, we will have the opposite inequality. Let us use the function *hv* expressed explicitly via *u* and *h* as follows:

$$
h\nu = \begin{cases} \frac{1}{q-1}h\left(1 - \left(\frac{h}{u}\right)^{q-1}\right) & \text{if } 1 < q < +\infty, \\ h\log\left(\frac{u}{h}\right) & \text{if } q = 1, \\ \frac{1}{1-q}\left(h^qu^{1-q} - h\right) & \text{if } -\infty < q < 1. \end{cases} \tag{36}
$$

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

(continuation)

Since $u > 0$, $h > 0$ in Ω , we have $\frac{u}{h}(\Omega) \subset \phi(I_q) = (0, \infty)$, and $h\nu \in C^2(\Omega)$.

In the case $q > 0$ the function ϕ is concave, increasing, and $\phi(0) = 1$. We obtain from the Corollary,

$$
-\Delta(hv)+h^{q}V\geq 0. \qquad (37)
$$

Since $u > v > 0$ on $\partial\Omega$, and consequently $\inf_{\Omega} u > 0$, we actually have h **v** \in $C(\overline{\Omega}) \cap C^2(\Omega)$, and h **v** ≥ 0 on $\partial\Omega$, which by the maximum principle implies (35). In addition, if $q > 1$, then $I_q = (-\infty, \frac{1}{q-1})$, so that $v(x) < \frac{1}{q-1}$. Combining this estimate with (35) gives the necessary condition for the existence of *u*:

$$
-\mathrm{G}^{\Omega}(h^q V)(x) < \frac{1}{q-1}h(x), \quad \text{for all } x \in \Omega.
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

(continuation)

Similarly, in the case $\bm{q}<\bm{0}$, we have $\bm{h}\bm{v}\in\bm{C}\left(\overline{\Omega}\right)\cap\bm{C}^2(\Omega)$ since inf_{Ω} $h > 0$. The inequality $u \leq v$ on $\partial \Omega$ yields the boundary condition $h\nu < 0$ on $\partial\Omega$. By the Corollary we obtain that in Ω ,

$$
-\Delta(hv)+h^{q}V\leq 0, \text{ for all } x\in\Omega.
$$
 (38)

Together with the boundary condition this yields by the maximum principle

$$
\mathbf{v}(\mathbf{x}) \leq -\frac{1}{h(\mathbf{x})} \mathbf{G}^{\Omega}(h^q V)(\mathbf{x}), \quad \text{for all } \mathbf{x} \in \Omega.
$$
 (39)

In view of (36), this translates into the desired inequality (16) for *u*. Moreover, since *I^q* = $\Big(-\frac{1}{1-q},+\infty$), in this case $v(x) > -\frac{1}{1-q}$. Combining this estimate with (39) yields the necessary condition (15) for the existence of *u*, namely $(1 - q)G^{\Omega}(h^q V)(x) < h(x), \forall x \in \Omega$.

 Ω

(□) (何) (□) (□) (□)

Proof of Theorem 3

Suppose $\Omega \subset M$ is a relatively compact domain whose boundary is regular with respect to the Dirichlet problem. Let

$$
h = P^{\Omega} \nu + G^{\Omega} \mu > 0 \quad \text{in } \Omega. \tag{40}
$$

Since μ is uniformly bounded in Ω , we have

$$
\mathrm{G}^\Omega\mu\leq \left(\sup_\Omega\mu\right)\mathrm{G}^\Omega 1,
$$

and hence by the regularity of $\partial\Omega$,

$$
\lim_{y\to x} G^{\Omega}\mu(y) = \lim_{y\to x} G^{\Omega}1(y) = 0, \quad \lim_{y\to x} P^{\Omega}\nu(y) = \nu(x), \quad x \in \partial\Omega.
$$

It follows $h \in C^2(\Omega) \cap C(\overline{\Omega})$, $-\Delta h = \mu$, and

$$
\lim_{y\to x} h(y) = \lim_{y\to x} u(y) = \nu(x), \quad x\in \partial\Omega.
$$

 \blacktriangleleft \Box \blacktriangleright \blacktriangleleft \Box \blacktriangleright \blacktriangleleft \Box \Box Ω

For $\epsilon > 0$, set $u_{\epsilon} = u + \epsilon$, $h_{\epsilon} = h + \epsilon$, and define the function v_{ϵ} via

$$
\frac{u_{\epsilon}}{h_{\epsilon}}=\phi\left(v_{\epsilon}\right),
$$

where ϕ is chosen as in the proof of the previous Lemma. Note that $h_{\epsilon} > 0$ is superharmonic in Ω , and $-\Delta h_{\epsilon} = \mu$. Clearly, $h_{\epsilon}, u_{\epsilon}, v_{\epsilon} \in C^2(\Omega) \cap C(\overline{\Omega}).$ Identity (21) applied to $h_{\epsilon}, u_{\epsilon}, v_{\epsilon}$ in place of h, u, v gives

$$
-\Delta(h_{\epsilon}v_{\epsilon})=\frac{-\Delta u}{\phi'(v_{\epsilon})}+\frac{\phi''(v_{\epsilon})}{\phi'(v_{\epsilon})}|\nabla v|^2h_{\epsilon}+\Delta h\left(\frac{\phi(v_{\epsilon})}{\phi'(v_{\epsilon})}-v_{\epsilon}\right),
$$

where

$$
\phi'(\nu_{\epsilon}) = \phi(\nu_{\epsilon})^q = \left(\frac{\nu_{\epsilon}}{h_{\epsilon}}\right)^q.
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Proof of Theorem 3 (continuation)
\nSuppose
$$
q > 0
$$
 and $-\Delta u \ge -Vu^q + \mu$, $\mu = -\Delta h$. Hence,
\n
$$
-\Delta(h_{\epsilon}v_{\epsilon}) \ge -h_{\epsilon}^q \left(\frac{u}{u_{\epsilon}}\right)^q V + \frac{\phi''(v_{\epsilon})}{\phi'(v_{\epsilon})} |\nabla v|^2 h_{\epsilon} + \Delta h \left(\frac{\phi(v_{\epsilon}) - 1}{\phi'(v_{\epsilon})} - v_{\epsilon}\right).
$$

Drop the last two non-negative terms on the right:

$$
-\Delta(h_{\epsilon}v_{\epsilon})+h_{\epsilon}^{q}\left(\frac{u}{u_{\epsilon}}\right)^{q}V\geq 0.
$$

Hence, the function

$$
h_{\epsilon}v_{\epsilon} + G^{\Omega}\left(h_{\epsilon}^{q}\left(\frac{u}{u_{\epsilon}}\right)^{q}V\right)
$$

is superharmonic in Ω , and has non-negative boundary values:

$$
h_{\epsilon}v_{\epsilon}=(\nu+\epsilon)\phi^{-1}\left(\frac{u+\epsilon}{\nu+\epsilon}\right)\geq(\nu+\epsilon)\phi^{-1}(1)=0\quad\text{on }\partial\Omega,
$$

since $u \ge \nu$ on $\partial\Omega$, ϕ is increasing, and $\phi(0) = 1$.

 \equiv

 DQ

÷.

Consequently, by the maximum principle lemma,

$$
\mathbf{h}_{\epsilon}\mathbf{v}_{\epsilon} \geq -\mathbf{G}^{\Omega}\left(\mathbf{h}_{\epsilon}^{q}\left(\frac{\mathbf{u}}{\mathbf{u}_{\epsilon}}\right)^{q}\mathbf{V}\right) \text{ in } \Omega.
$$
 (41)

Since $u \leq u_{\epsilon}$, this implies

$$
\mathbf{h}_{\epsilon}\mathbf{v}_{\epsilon} \geq -\mathbf{G}^{\Omega}\left(\mathbf{h}_{\epsilon}^{\mathbf{q}}\mathbf{V}_{+}\right),\tag{42}
$$

where, in the case $q > 1$ we additionally have

$$
-\frac{G^{\Omega}\left(h_{\epsilon}^{q}V_{+}\right)}{h_{\epsilon}}\leq-\frac{G^{\Omega}\left(h_{\epsilon}^{q}\left(\frac{u}{u_{\epsilon}}\right)^{q}V\right)}{h_{\epsilon}}\leq\nu_{\epsilon}<\frac{1}{q-1}.\qquad(43)
$$

Let us show that in the case $q \ge 1$ actually $u > 0$ in Ω . In terms of u_{ϵ} , estimate (42) gives, for $q > 1$,

$$
u_{\epsilon} \geq h_{\epsilon}(x)\phi\left(-\frac{G^{\Omega}\left(h_{\epsilon}^{q}V_{+}\right)}{h_{\epsilon}}\right).
$$
\n(44)

 \overline{AB} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{DA} \curvearrowright

Clearly, $h_{\epsilon} \downarrow h$, where $h > 0$ by (40). Passing to the limit as $\epsilon \rightarrow 0$, we deduce by the dominated convergence theorem, for $q \geq 1$,

$$
u \ge h\phi\left(-\frac{G^{\Omega}(h^qV_+)}{h}\right) > 0 \quad \text{in } \Omega.
$$

Note that here, for $q > 1$, we have a strict inequality

$$
-\frac{G^{\Omega}\left(h^{q}V_{+}\right)(x)}{h(x)}<\frac{1}{q-1},
$$

since otherwise $u(x)=+\infty$.

K □ ▶ K fी ▶ K 로 ▶ K 로 ▶ 〈 로 〉 K 이 Q (V

Hence, in the case $q \geq 1$, we have $u > 0$ in Ω . Consequently $\frac{u}{u_{\epsilon}} \uparrow 1$ as $\epsilon \downarrow 0$, and by the dominated convergence theorem,

$$
\lim_{\epsilon \to 0} G^{\Omega} \left(h_{\epsilon}^{q} \left(\frac{u}{u_{\epsilon}} \right)^{q} V \right) = G^{\Omega} \left(h^{q} V \right). \tag{45}
$$

The main estimate restated in terms of \mathbf{u}_{ϵ} :

$$
u_{\epsilon} \geq h_{\epsilon}(x)\phi\Big(-\frac{G^{\Omega}\left(h_{\epsilon}^{q}\left(\frac{u}{u_{\epsilon}}\right)^{q}V\right)}{h_{\epsilon}}\Big), \qquad (46)
$$

where by (43) the right-hand side is well-defined. Passing to the limit as $\epsilon \downarrow 0$, we deduce, for $q \ge 1$,

$$
u \geq h\phi\Big(-\frac{G^{\Omega}(h^qV)}{h}\Big).
$$

For $q > 1$, additionally,

$$
-\frac{G^{\Omega}(h^qV)}{h}<\frac{1}{q-1}.
$$

A similar argument applies for $0 < q < 1$, but in this case u can be equal to zero on an open set, so that $\frac{u}{u_{\epsilon}} \uparrow \chi_{\Omega^+}$ as $\epsilon \downarrow 0$. Passing to the limit in (41) using the dominated convergence theorem as above gives

$$
h\nu\geq -G^{\Omega}\left(\chi_{\Omega^+}h^qV\right),
$$

which is equivalent to the desired lower estimate for *u*.

In the case $q < 0$, we define the function v_{ϵ} in a slightly different way, via the equation

$$
\frac{u}{h_{\epsilon}}=\phi(v_{\epsilon}),
$$

where as before $h_{\epsilon} = h + \epsilon$, so that $-\Delta h_{\epsilon} = \mu$, and

$$
h_{\epsilon} v_{\epsilon} = \frac{1}{1-q} h_{\epsilon}^{q} (u^{1-q} - h_{\epsilon}^{1-q}) \in C^{2}(\Omega) \cap C(\overline{\Omega}). \qquad (47)
$$

 Ω

Then

$$
-\Delta(h_{\epsilon}v_{\epsilon})+h_{\epsilon}^q V\leq 0.
$$

Since $u \leq v$ on $\partial \Omega$, it follows

$$
h_{\epsilon}v_{\epsilon}=\frac{1}{1-q}\left(\nu+\epsilon\right)^{q}\left(u^{1-q}-(\nu+\epsilon)^{1-q}\right)\leq 0\quad\text{on }\partial\Omega.
$$

Hence,

$$
h_{\epsilon}v_{\epsilon}\leq -G^{\Omega}(h_{\epsilon}^{q}V)\quad\text{in }\Omega, \qquad (48)
$$

or, equivalently,

$$
u \leq h_{\epsilon} \left[1 - (1 - q) \frac{G^{\Omega}(h_{\epsilon}^{q} V)}{h_{\epsilon}}\right]^{\frac{1}{1 - q}} \quad \text{in } \Omega.
$$
 (49)

K 伊 ▶ K 草 ▶ K 草 ▶ │ 草 │ ◆ 9 Q ⊙ \leftarrow \Box

From the above estimates we deduce

$$
-\frac{G^{\Omega}(h_{\epsilon}^q V)}{h_{\epsilon}} \geq v_{\epsilon} > -\frac{1}{1-q}, \qquad (50)
$$

so that the expression in square brackets in is always positive. Moreover,

$$
-\frac{G^{\Omega}(h_{\epsilon}^q V_+)}{h_{\epsilon}}+\frac{G^{\Omega}(h^q V_-)}{h} > -\frac{1}{1-q}.\tag{51}
$$

Since $q < 0$, we have $h_{\epsilon}^q \uparrow h^q$ as $\epsilon \downarrow 0$. Using dominated convergence,

$$
-\frac{G^{\Omega}(h^qV)(x)}{h(x)}\geq -\frac{1}{1-q}.\tag{52}
$$

Notice that here $G^{\Omega}(h^qV_+)(x) < +\infty$; otherwise

$$
G^{\Omega}(h^qV_{\pm})(x) = +\infty,
$$

which contradicts the assumption that $G^{\Omega}(h^q V)(x)$ is well-defined.

Clearly, (49) yields the following inequality at *x*:

$$
u\leq h_{\epsilon}\left[1-(1-q)\frac{G^{\Omega}(h_{\epsilon}^qV_+)}{h_{\epsilon}}+(1-q)\frac{G^{\Omega}(h^qV_-)}{h}\right]^{\frac{1}{1-q}}.\quad(53)
$$

By the dominated convergence theorem, we obtain the corresponding upper estimate at *x*:

$$
u(x)\leq h(x)\left[1-(1-q)\frac{G^{\Omega}(h^qV)(x)}{h(x)}\right]^{\frac{1}{1-q}}.
$$

Since by assumption $u(x) > 0$, the expression in square brackets must be strictly positive (the desired necessary condition).

 Ω

Extensions of Theorem 3

We continue our discussion of pointwise estimates of solutions in the local case for arbitrary domains $\Omega \subseteq M$ (not necessarily relatively compact). Denote by $\partial_{\infty}M$ the infinity point of the one-point compactification of *M*. For any open subset $\Omega \subset M$ denote by $\partial_{\infty}\Omega$ the union of $\partial\Omega$ and $\partial_{\infty}M$, if Ω is not relatively compact (infinite boundary of Ω). We set $\partial_{\infty}\Omega = \partial\Omega$ if Ω is relatively compact.

Definition

For a function \boldsymbol{u} defined in $\Omega \subseteq \boldsymbol{M}$, we write

$$
\lim_{y \to \partial_{\infty} \Omega} u(y) = 0, \tag{54}
$$

if $\lim_{k\to\infty} u(y_k) = 0$ for any sequence $\{y_k\}$ in Ω that converges to a point of $\partial_{\infty}\Omega$; the latter means, that either $\{y_k\}$ converges to a point on $\partial\Omega$ or diverges to $\partial_{\infty}M$. In the same way we understand similar equalities and inequalities involving lim sup and lim inf *.*

重

 OQ

 $\blacktriangleleft \overline{\oplus}$ \blacktriangleright $\blacktriangleleft \overline{\oplus}$ \blacktriangleright $\blacktriangleleft \overline{\oplus}$ \blacktriangleright

Local case

For example, if Ω is relatively compact, then (54) means that $\lim_{k\to\infty} u(y_k) = 0$ for any sequence $\{y_k\}$ converging to a point on $\partial\Omega$. If $\Omega = M$ then $\partial \Omega = \emptyset$ and (54) means that $\lim_{k\to\infty} u(y_k) = 0$ for any sequence $y_k \to \partial_{\infty}M$, that is, for any sequence $\{y_k\}$ that leaves any compact subset of *M*.

In particular, for $M = \mathbb{R}^n$, (54) is equivalent to $u(y) \to 0$ as $|y| \to \infty$. We will use the notation

$$
\chi_u(x)=\left\{\begin{array}{ll}1,& u(x)>0,\\0,& u(x)\leq 0.\end{array}\right.
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Main results: local case

Theorem 4 (Grigor'yan-Verbitsky 2019)

Let (M, m) *be an arbitrary weighted manifold. Let* $\Omega \subseteq M$ *be a connected open subset of M with a finite Green function* G^{Ω} *. Suppose* $V, f \in C(\Omega)$, where $f > 0, f \not\equiv 0$ in Ω . Let $u \in C^2(\Omega)$ satisfy

in the case
$$
q > 0
$$
: $-\Delta u + Vu^{q} \ge f$ in Ω , $u \ge 0$, (55)

or

in the case
$$
q < 0
$$
: $-\Delta u + Vu^q \leq f$ in Ω , $u > 0$. (56)

Set $h = G^{\Omega} f$ and assume that $h < \infty$ in Ω . Assume also that $G^{\Omega}(h^q V)(x)$ (respectively $G^{\Omega}(\chi_u h^q V)(x)$ in the case $0 < q < 1$) is *well-defined for all* $x \in \Omega$ *.*

K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 9 Q @

Main results: local case (continuation)

Theorem 4 (statements (i)-(ii)) *Then the following statements hold for all* $x \in \Omega$. (*i*) If $q = 1$, then

$$
u(x) \geq h(x)e^{-\frac{1}{h(x)}G^{\Omega}(hV)(x)}.
$$
 (57)

(*ii*) If $q > 1$, then necessarily

$$
-(q-1) G^{\Omega}(h^q V)(x) < h(x), \qquad (58)
$$

and the following estimate holds:

$$
u(x) \geq \frac{h(x)}{\left[1+(q-1)\frac{G^{\Omega}(h^{q}V)(x)}{h(x)}\right]^{\frac{1}{q-1}}}.
$$
\n(59)

 $\sqrt{1 + \frac{1}{2}}$ \rightarrow $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow 活 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ \leftarrow \Box

Main results: local case (continuation)

Theorem 4 (statements (iii)-(iv)) (*iii*) *If* $0 < q < 1$ *, then* $u(x) \geq h(x)$ $\sqrt{ }$ $1 - (1 - q)$ $G^{\Omega}(\chi_{\mu}h^{q}V)(x)$ *h*(*x*) $\frac{1}{1}$ 1*q* + *.* (60) (*iv*) If $q < 0$ and $\lim_{y\to\partial_{\infty}\Omega} u(y) = 0$, then necessarily (58) holds, and $u(x) \leq h(x)$ $\sqrt{ }$ $1 - (1 - q)$ $G^{\Omega}(h^q V)(x)$ *h*(*x*) $\frac{1}{1}$ 1*q .* (61)

Remarks. 1. Condition $f \not\equiv 0$ implies $h = G^{\Omega} f > 0$ in Ω . 2. No *boundary conditions* are imposed in the case *q >* 0.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

Remarks

(continuation)

Remarks. 3. In the case $q \ge 1$, it follows from (57) and (59) that the condition

 G^{Ω} (h^q V) (x) < + ∞

 $\mathsf{implies}\;u(x)>0.$ Moreover, if for some $0<\mathsf{C}<\frac{1}{q-1}$ and all $x\in\Omega,$

 G^{Ω} (h^qV) (x) $\leq C h(x)$,

then $u \ge c h$ in Ω with some constant $c = c(C, q) > 0$.

4. In the case $0 < q < 1$, the function u can vanish in Ω , but the estimate of *u* does not depend on the values of *V* on the set $\{u = 0\}$. This explains the appearance of the factor $\chi_{\boldsymbol{\mu}}$ and the subscript $+$ on the right-hand side of (60).

5. In the case $q < 0$, the boundary condition $\lim_{y\to\partial_{\infty}\Omega}u(y)=0$ is essential; without it *u* does not admit any upper bound.

K □ ▶ K 部 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (Ŷ

Main results: local case (continuation)

The proof of Theorem 4 reduces to Theorem 3 above that deals with relatively compact sets $\Omega \subset M$, using an exhaustion of $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ by means of increasing relatively compact sets Ω_k with smooth boundary, and approximation of *f* . We omit the details (see [Grigor'yan-Verbitsky 2019], Proof of Theorem 3.1).

In the next theorem we give estimates of solutions *u* of semi-linear inequalities (55)-(56) with $f \equiv 0$ (Theorem 4 requires that $f \not\equiv 0$.) Such results are applicable to the so-called gauge function for Schrödinger equations $(q = 1)$, large solutions for super-linear equations $(q > 1)$, or ground state solutions ($-\infty < q < 1$) to the corresponding equations and inequalities in unbounded domains in \mathbb{R}^n or on noncompact manifolds.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ