Potential Theory and Nonlinear Elliptic Equations Lecture 3

I. E. Verbitsky

University of Missouri, Columbia, USA

Nankai University, Tianjing, China June 2021

K □ ▶ K ਿ K 시 프 K K 프 X 노 트 및 X 9 Q Q Q

Publications

- ¹ A. Grigor'yan and I. Verbitsky, *Pointwise estimates of solutions to nonlinear equations for non-local operators*, *Ann. Scuola Norm. Super. Pisa*, 20 (2020) 721–750
- ² A. Grigor'yan and I. Verbitsky, *Pointwise estimates of solutions to semilinear elliptic equations and inequalities*, *J. D*0 *Analyse Math.*, 137 (2019) 529–558
- ³ M. Frazier and I. Verbitsky, *Positive solutions and harmonic measure for Schrödinger operators in uniform domains*, *Pure Appl. Funct. Analysis* (2021), arXiv:2011.04083
- ⁴ A. Grigor'yan and W. Hansen, *Lower estimates for a perturbed Green function, J. D*0 *Analyse Math.*, 104 (2008), 25–58.
- ⁵ N. Kalton and I. Verbitsky, *Nonlinear equations and weighted norm inequalities*, *Trans. Amer. Math. Soc.* 351 (1999), 3441–3497.
- ⁶ H. Brezis and X. Cabr´e, *Some simple nonlinear PDE's without solutions*, *Boll. Unione Mat. Ital.*, 8, Ser. 1-B (1998) 223–262.

 OQ

Additional literature

- ¹ J. L. Doob, *Classical Potential Theory and Its Probabilistic Counterpart,* Classics in Math., Springer, New York –Berlin–Heidelberg–Tokyo, 2001 (Reprint of the 1984 ed.)
- ² A. Grigor'yan, *Heat Kernel and Analysis on Manifolds*, Amer. Math.Soc./Intern. Press Studies in Adv. Math., 47, 2009.
- ³ N. S. Landkof, *Foundations of Modern Potential Theory*, Grundlehren der math. Wissenschaften, 180, Springer, New York–Heidelberg, 1972.

 Ω

A → → 로 → → 로 → 트

Main results: local case

Recall the following theorem (without boundary data) from Lecture 2.

Theorem 4 (Grigor'yan-Verbitsky 2019)

Let (M, m) *be an arbitrary weighted manifold. Let* $\Omega \subset M$ *be a connected open subset of* M *with a finite Green function* G^{Ω} *. Suppose* $V, f \in C(\Omega)$, where $f \geq 0, f \not\equiv 0$ in Ω . Let $u \in C^2(\Omega)$ satisfy

in the case
$$
q > 0
$$
: $-\Delta u + Vu^{q} \ge f$ in Ω , $u \ge 0$, (1)

or

in the case
$$
q < 0
$$
: $-\Delta u + Vu^q \leq f$ in Ω , $u > 0$. (2)

Set $h = G^{\Omega} f$ *and assume that* $h < \infty$ *in* Ω *. Assume also that* $G^{\Omega}(h^q V)(x)$ (respectively $G^{\Omega}(\chi_{\mu} h^q V)(x)$ in the case $0 < q < 1$) *is well-defined for all* $x \in \Omega$.

 Ω

◀ ㅁ ▶ ◀ 何 ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 │

Main results: local case (continuation)

Theorem 4 (statements (i)-(ii)) *Then the following statements hold for all* $x \in \Omega$. (*i*) If $q = 1$, then

$$
u(x) \geq h(x)e^{-\frac{1}{h(x)}G^{\Omega}(hV)(x)}.
$$
 (3)

(*ii*) If $q > 1$, then necessarily

$$
-(q-1) G^{\Omega}(h^q V)(x) < h(x), \qquad (4)
$$

and the following estimate holds:

$$
u(x) \geq \frac{h(x)}{\left[1+(q-1)\frac{G^{\Omega}(h^qV)(x)}{h(x)}\right]^{\frac{1}{q-1}}}.
$$

(ロ) (伊) (ミ) (ミ) 画 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

. (5)

Main results: local case (continuation)

Theorem 4 (statements (iii)-(iv)) (*iii*) *If* $0 < q < 1$ *, then* $u(x) \geq h(x)$ $\sqrt{ }$ $1 - (1 - q)$ $G^{\Omega}(\chi_{\mu}h^{q}V)(x)$ *h*(*x*) $\frac{1}{1}$ 1*q* + *.* (6) (*iv*) If $q < 0$ and $\lim_{y\to\partial_{\infty} \Omega} u(y) = 0$, then necessarily (4) holds, and $u(x) \leq h(x)$ $\sqrt{ }$ $1 - (1 - q)$ $G^{\Omega}(h^q V)(x)$ *h*(*x*) $\frac{1}{1}$ 1*q .* (7)

Remarks. 1. Condition $f \not\equiv 0$ implies $h = G^{\Omega} f > 0$ in Ω . 2. No *boundary conditions* are imposed in the case *q >* 0.

 Ω

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 〈 로 〉

Extensions of Theorem 3: local case

The proof of Theorem 4 reduces to Theorem 3 that deals with relatively compact sets $\Omega \subset M$, using an exhaustion of $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ by means of increasing relatively compact sets Ω_k with smooth boundary, and approximation of *f* . We omit the details (see [Grigor'yan-Verbitsky 2019], Proof of Theorem 3.1).

In the next theorem we give estimates of solutions *u* of semilinear inequalities with both $\nu \equiv 0$ and $f \equiv 0$. (Theorem 4 requires $f \not\equiv 0$.)

Such results are applicable to the so-called gauge function for Schrödinger equations ($q = 1$), large solutions for super-linear equations ($q > 1$), or ground state solutions ($-\infty < q < 1$) to the corresponding equations and inequalities in unbounded domains in R*ⁿ* or on noncompact Riemannian manifolds.

 Ω

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ │ 로 ..

Main results: local case

Theorem 5 (Grigor'yan-Verbitsky 2019)

Let (M, m) *be an arbitrary weighted manifold. Let* $\Omega \subseteq M$ *be a connected open subset of M* with a finite Green function G^{Ω} . *Suppose* $V \in C(\Omega)$ *. Let* $u \in C^2(\Omega)$ *satisfy either the inequality*

$$
-\Delta u + V u^q \geq 0, \quad u \geq 0 \text{ in } \Omega, \quad \text{if } q > 0,
$$
 (8)

or

$$
-\Delta u + V u^q \leq 0, \quad u > 0 \text{ in } \Omega, \quad \text{if } q < 0. \tag{9}
$$

Assume also that $G^{\Omega}V(x)$ (respectively $G^{\Omega}(\chi_u V)(x)$ in the case $0 < q < 1$) is well-defined for all $x \in \Omega$. Then the following statements *hold for all* $x \in \Omega$.

 Ω

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

Main results: local case (continuation)

Theorem 5 (statements (i)-(ii)) (*i*) If $q = 1$ and lim inf $y{\to}\partial_\infty\Omega$ $u(y) \ge 1$ (10) *then* $u(x) \geq e^{-G^{\Omega}V(x)}$. (11) (*ii*) If $q > 1$ and lim $y{\to}\partial_\infty\Omega$ $u(y) = +\infty,$ (12) *then necessarily* $G^{\Omega}V(x) > 0$, and $u(x) \geq$ $\int (q-1) G^{\Omega} V(x)$ $\vert -\frac{1}{q-1}\vert$ *.* (13)

> ◀ ㅁ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 │ $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Main results: local case (continuation)

Theorem 5 (statements (iii)-(iv)) (*iii*) *If* $0 < q < 1$ *, then*

$$
u(x) \geq \left[-(1-q) G^{\Omega}(\chi_u V)(x) \right]_+^{\frac{1}{1-q}}.
$$
 (14)

(*iv*) If $q < 0$ and $\lim_{y\to\partial_{\infty}\Omega}u(y)=0$, then necessarily $G^{\Omega}V(x) \leq 0$, *and*

$$
u(x) \leq \left[-(1-q) G^{\Omega} V(x) \right]^{\frac{1}{1-q}}.
$$
 (15)

Remarks. 1. The proof of Theorem 5 is similar to that of Theorem 4, using an exhaustion $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ by increasing relatively compact sets Ω_k , so that $G^{\Omega_k} \uparrow G^{\Omega}$ (see [Grigor'yan-Verbitsky 2019], Proof of Theorem 3.3).

Remarks

(continuation)

2. The **boundary conditions** imposed in the cases $q > 1$ and $q < 0$ are essential for the estimates. Stronger two-sided estimates for $q = 1$ [Frazier-Verbitsky 2017/21] if $V < 0$, true for $\sigma = -V \in \mathcal{M}^+(\Omega)$.

3. The only case where we impose no boundary conditions is in sublinear problems where $0 < q < 1$. If $V < 0$, we may assume $\sigma = -V \in \mathcal{M}^+(\Omega)$. Then any nontrivial (generalized) solution $u > 0$ to the inequality $-\Delta u \geq \sigma u^q$ in Ω is strictly positive, and satisfies the estimate

$$
u(x) \geq \left[(1-q) G^{\Omega} \sigma(x) \right]^{\frac{1}{1-q}}, \quad x \in \Omega.
$$
 (16)

The constant $(1 - q)$ 1 $\overline{1-q}$ in this inequality is sharp.

4. Analogues of (16) for 0 *< q <* 1 will be proved below for non-local operators and more general kernels in place of G^{Ω} . Two-sided estimates in the one-dimensional example $\Omega = (0, +\infty)$ discussed in the Introduction.

Nonlinear integral equations with general positive kernel Non-local case

Let (Ω, m) be a locally compact measure space. The theorems below give some sharp existence results together with pointwise estimates of solutions $0 < u < +\infty$ dm-a.e. (for $q > 1$, $V \le 0$, or $q < 0$, $V \ge 0$):

$$
u(x) + \int_{\Omega} K(x,y) u(y)^q V(y) dm(y) = h(x) \quad \text{in } \Omega. \qquad (17)
$$

Here $K : \Omega \times \Omega \rightarrow [0, +\infty]$ a Borel measurable *kernel*. For $\mu \in \mathcal{M}^+(\Omega)$, we set

$$
K\mu(x)=\int_{\Omega}K(x,y)\,d\mu(y).
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Nonlinear integral equations with general positive kernel (continuation)

More generally, for $\sigma \in \mathcal{M}^+(\Omega)$ (in place of $d\sigma = -V dm$), we consider the equation

$$
u=K(u^q d\sigma)+h, \quad u\geq 0 \text{ in } \Omega,
$$

which serves as an analogue of the equation

$$
-\Delta u = \sigma u^q + \mu, \quad u \ge 0 \text{ in } \Omega,
$$
 (18)

where *u* is a *generalized* solution with zero boundary values. In this case, $K = G^{\Omega}$ is the Green function of the Laplacian Δ , and $h = G^{\Omega} \mu$ is the Green potential of a measure μ in Ω . For bounded C^2 -domains Ω , and $\mu \in L^1(\Omega, \partial_\Omega dx)$ this coincides with the notion of a *very* weak solution. Here $\partial_{\Omega}(x) = \text{dist}(x, \Omega^c)$.

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Existence and estimates of solutions (*q >* 1)

Theorem 6 (Kalton-Verbitsky 1999)

Let (Ω, σ) *be a locally compact measure space,* $K \geq 0$ *a kernel, and* $h \geq 0$ *a* measurable function. For $q > 1$, suppose

$$
K(h^q d\sigma)(x) \leq \left(1-\frac{1}{q}\right)^q \frac{1}{q-1} h(x) \quad d\sigma
$$
-a.e. in Ω . (19)

Then $u = K(u^q d\sigma) + h$ *has a* minimal *solution u such that*

$$
h(x) \leq u(x) \leq \frac{q}{q-1} h(x) \quad d\sigma
$$
-a.e. in Ω . (20)

Remarks. 1. The extra constant $\left(1 - \frac{1}{q}\right)$ ⌘*q <* 1 ensures existence and provides an upper bound. 2. A matching *necessary* condition holds for Green's kernels (with 1) and quasi-metric kernels. 3. A sharper lower bound holds for all solutions *u* (Theorems 3–5 in the local case).

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q (V

Existence and estimates of solutions (*q <* 0)

Theorem 7 (Grigor'yan-Verbitsky 2020)
For
$$
q < 0
$$
 and $\sigma, \mu \ge 0$, $h = K\mu$, suppose the following condition holds,

$$
K(h^q d\sigma)(x) \leq \left(1-\frac{1}{q}\right)^q \frac{1}{1-q} h(x) \quad d\sigma
$$
-a.e. in Ω . (21)

Then $u + K(u^q d\sigma) = h$ *has a* maximal *solution* u *such that*

$$
\frac{1}{1-\frac{1}{q}} h(x) \le u(x) \le h(x) \quad d\sigma
$$
-a.e. in Ω . (22)

Remarks. 1. Theorems 6–7 combined with Theorems 3–5 give *necessary* **and sufficient** conditions for the existence of weak solutions (up to a constant). 2. The constants in (19) and (21) are smaller than the constant $\frac{1}{|q-1|}$ in the *necessary* conditions for both $q > 1$ and $q < 0$.

Thorem 6 (*q >* 1) is well-known, so we give only a proof of Theorem 7 in the case $q < 0$. Let us assume that

$$
K(h^q d\sigma)(x) \leq a h(x) \quad d\sigma - a.e. \text{ in } \Omega,
$$

for some constant $a > 0$, where $0 < h < +\infty$ a.e. Set $u_0 = h$, and construct a sequence of consecutive iterations u_k by

$$
u_{k+1}+K(u_k^q d\sigma)=h, \quad k=0,1,2,\ldots.
$$

Clearly, by the above inequality,

 $(1 - a)h(x) \le u_1(x) = h(x) - K(h^q d\sigma)(x) \le h(x) = u_0(x).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q @

(continuation)

We set $b_0 = 1$, $b_1 = 1 - a$, and continue the argument by induction. Suppose that for some $k = 1, 2, \ldots$

$$
b_k h(x) \leq u_k(x) \leq u_{k-1}(x) \quad \text{in } \Omega.
$$

Since $q < 0$ and $\sigma \geq 0$, we deduce using the above estimates,

$$
(1-a bkq) h(x) \leq h(x) - bkq K(hq d\sigma)(x) \leq h(x) - K(ukq d\sigma)(x),
$$

where the right-hand side $h - K(u_k^q d\sigma) = u_{k+1}$. Clearly,

$$
u_{k+1}(x) \leq h(x) - K(u_{k-1}^q d\sigma)(x) = u_k(x).
$$

Hence,

$$
b_{k+1} h(x) \le u_{k+1}(x) \le u_k(x)
$$
, where $b_{k+1} = 1 - a b_k^q$.

We need to pick $a > 0$ small enough, so that $b_k \downarrow b$, where $b > 0$, and $b = 1 - a b^{q}$. K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (V

(continuation)

In other words, we are solving the equation

$$
\frac{1-x}{a}=x^q
$$

by consecutive iterations $b_{k+1} = 1 - ab_k^q$ starting from the initial value $b_0 = 1$. Clearly, this equation has a solution $0 < x < 1$ if and only if $0 < a \leq a_*$, where $y = \frac{1-x}{a_*}$ *a*⇤ is the tangent line to the convex curve $y = x^q$. Here the optimal value a_* is found by equating the derivatives, and solving the system of equations

$$
x_*^q=\frac{1-x_*}{a}, \quad qx_*^{q-1}=-\frac{1}{a_*},
$$

which gives

$$
a_* = \left(1 - \frac{1}{q}\right)^q \frac{1}{1 - q}, \quad x_* = \frac{1}{1 - \frac{1}{q}}
$$

 Ω

.

◀ ㅁ ▶ ◀ @ ▶ ◀ 至 ▶ ◀ 혼 ▶ │ 돈 │

Proof of Theorem 7 (continuation)

Letting $a = a_*$, we see that by the convexity of $y = x^q$, there is a unique solution $x_* = \frac{1}{1-1}$ $1 - \frac{1}{q}$, and by induction, $x_* < b_{k+1} < b_k < 1$, so that

$$
b_k\downarrow b=x_*=\frac{1}{1-\frac{1}{q}}>0.
$$

From this it follows that the desired inequality holds for all $k = 1, 2, \ldots$. Passing to the limit as $k \to \infty$, and using the monotone convergence theorem shows that $u = \lim_{k \to \infty} u_k$ is a solution of the integral equation such that

$$
b\,h(x)\leq u(x)\leq u_0(x)=h(x).
$$

Moreover, it is easy to see by construction that *u* is a maximal solution, that is, if \tilde{u} is another non-negative solution to (17), then $\tilde{u} \le u_k$ for every $k = 0, 1, 2, \ldots$, and consequently $\tilde{u} \le u$ in Ω .

 OQ

(□) (何) (□) (□) (□)

Lower estimates for homogeneous equations $(0 < q < 1)$ The weak maximum principle

A kernel K on $\Omega \times \Omega$ satisfies the *weak maximum principle* (WMP) with constant $\mathfrak{b} \geq 1$ if, for any $\nu \in \mathcal{M}^+(\Omega)$ with compact support,

$$
\sup \Big\{ K\nu(y) \colon \, y \in \Omega \Big\} \leq \mathfrak{b} \, \sup \Big\{ K\nu(y) \colon \, y \in \operatorname{supp} \nu \Big\}.
$$

We consider the *homogeneous* sublinear equation $(0 < q < 1, h = 0)$

$$
u=K(u^q d\sigma), \quad u>0 \text{ in } \Omega,
$$

where $\sigma \in \mathcal{M}^+(\Omega)$.

This generalizes the sublinear elliptic equation

$$
(-\Delta)^{\frac{\alpha}{2}}u=\sigma u^{q} \text{ in } \mathbb{R}^{n}, \text{ } \text{lim inf } u=0,
$$

for $0 < \alpha < n$, or in $\Omega \subset \mathbb{R}^n$ with $0 < \alpha < 2$, $u = 0$ in Ω^c .

 Ω

(□) (何) (□) (□) □

Lower estimates for homogeneous equations $(0 < q < 1)$ (continuation)

Theorem 8 (Grigor'yan-Verbitsky 2020)

Let $0 < q < 1$, (Ω, σ) *a locally compact measure space. Let* K *be a non-negative kernel on* $\Omega \times \Omega$ *which satisfies the* (WMP). Then any *nontrivial nonnegative solution* u *to* $u > K(u^q d\sigma)$ *satisfies*

$$
u(x) \geq (1-q)^{\frac{1}{1-q}}b^{-\frac{q}{1-q}}\left[K\sigma(x)\right]^{\frac{1}{1-q}} d\sigma
$$
-a.e. in Ω . (23)

Remarks. 1. The constant $(1 - q)$ 1 $\overline{1-q}$ in the case $\mathfrak{b} = 1$ is sharp.

- 2. Lower estimate in Theorem 8 fails without the (WMP).
- 3. Lower estimate holds for *all* $x \in \Omega$: $K(u^q d\sigma)(x) \le u(x) \le +\infty$.
- 4. There are analogues for inhomogeneous equations, $\forall q \in \mathbb{R} \setminus \{0\}$.

K ㅁ ▶ K @ ▶ K 혼 ▶ K 혼 ▶ │ 혼 │ ⊙ ٩.⊙

Non-local case, inhomogeneous equations

Let K be a kernel on $\Omega \times \Omega$. Consider the inhomogeneous integral equation

$$
u=K(u^q d\sigma)+h,\quad u>0\,\,\mathrm{in}\,\,\Omega,
$$

where $\sigma \in \mathcal{M}^+(\Omega)$, and $h \geq 0$ ($h \not\equiv 0$).

This is a generalization of the semilinear elliptic equation

$$
(-\Delta)^{\frac{\alpha}{2}}u=\sigma u^q+\mu\quad\text{in }\mathbb{R}^n,\quad\liminf_{x\to\infty}u=0,
$$

for $0 < \alpha < n$, or in Ω , $0 < \alpha \leq 2$, $u = 0$ in Ω^c , $h = G^{\alpha} \mu$, $\mu \geq 0$. We introduce the *modified kernel*

$$
\widetilde{K}(x,y)=\frac{K(x,y)}{h(x)h(y)},\quad x,y\in\Omega.
$$

The weak domination principle

Let $h : \Omega \to (0, +\infty]$ be a lower semicontinuous function on Ω . Let $K:\Omega\times\Omega\to [0,+\infty]$ be a lower semicontinuous kernel. Then K satisfies the *weak domination principle* (WDP) with respect to *h* if: *For any compactly supported* $\nu \in \mathcal{M}^+(\Omega)$ *and any constant* $M > 0$,

$$
K\nu(x)\leq M h(x),\,\forall\,x\in\mathrm{supp}(\nu)\implies K\nu(x)\leq b\,M h(x),\,\forall\,x\in\Omega,
$$

whenever $K\nu$ is bounded (or ν has finite energy: $\int_\Omega K\nu d\nu < +\infty$).

Remark. The kernel *K* satisfies the (WDP) if the modified kernel *K*e satisfies the (WMP) provided for any compactly supported $\nu \in \mathcal{M}^+(\Omega)$ there exist compactly supported $\nu_n \in \mathcal{M}^+(\Omega)$, $K\nu_n \in C(\Omega)$, $K\nu_n$ \uparrow *K* ν in Ω .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q @

Non-local case, main theorem

Theorem 9 (Grigor'yan-Verbitsky 2020)

Let $h > 0$ *be a lower semicontinuous function in* Ω . Let K *be a kernel in* $\Omega \times \Omega$ such that the (WMP) holds for *K*, **h**. Suppose that $u \ge 0$ *satisfies* $u \ge K(u^q d\sigma) + h$ *if* $q > 0$ *, and the opposite if* $q < 0$ *. (i)* If $q > 0$ $(q \neq 1)$, we have

$$
u(x) \geq h(x)\left\{1+b\left[\left(1+\frac{(1-q)K(h^q d\sigma)(x)}{\mathfrak{b} h(x)}\right)^{\frac{1}{1-q}}-1\right]\right\}, (24)
$$

where in the case $q > 1$ *necessarily*

$$
K(h^q d\sigma)(x) < \frac{\mathfrak{b}}{q-1} h(x), \qquad (25)
$$

for all $x \in \Omega$ *such that* $K(u^q d\sigma)(x) + h(x) \le u(x) < +\infty$.

◀ ㅁ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 Ω

Non-local case, main theorem

(continuation)

Theorem 9 (statements (ii), (iii)) *(ii)* In the case $q = 1$,

$$
u(x) \geq h(x) \Big[1 + \mathfrak{b} \left(e^{ \mathfrak{b}^{-1} \frac{K(h d \sigma)(x)}{h(x)}} - 1 \right) \Big], \quad x \in \Omega.
$$
 (26)

(iii) If $q < 0$, then

$$
u(x) \leq h(x) \left\{ 1 - \mathfrak{b} \left[1 - \left(1 - \frac{(1-q)K(h^q d\sigma)(x)}{\mathfrak{b} h(x)} \right)^{\frac{1}{1-q}} \right] \right\}, \quad (27)
$$

for $x \in \Omega$ *, and necessarily*

$$
K(h^q d\sigma)(x) < \frac{\mathfrak{b}}{1-q}\Big[1-(1-\mathfrak{b}^{-1})^{1-q}\Big]h(x), \qquad (28)
$$

for all $x \in \Omega$: $0 < u(x) + K(u^q d\sigma)(x) \leq h(x) < +\infty$.

Some additional references

1. Linear case $q = 1$ (Schrödinger equations): lower estimates of perturbed Green's functions on domains and manifolds for $\sigma = -V < 0$ [Grigor'yan-Hansen 2008]. For $\sigma \geq 0$, [Frazier-Verbitsky 2017], [Frazier-Nazarov-Verbitsky 2014] two-sided estimates of perturbed Green's functions, *quasimetric kernels K*, arbitrary $\sigma \geq 0$ (under the spectrum of the Schrödinger operator). [Murata 1986], [Pinchover 2007] nice σ . 2. **Superlinear case** $q > 1$ **:** For $\sigma > 0$, [Brezis-Cabré 1998] (for the Laplacian $-\Delta$ only), [Kalton-Verbitsky 1999] two-sided estimates (quasimetric kernels, but no sharp constants).

3. Sublinear case $0 < q < 1$: $\sigma \geq 0$, *bounded* solutions, $-\Delta$ on \mathbb{R}^n [Brezis-Kamin 1992]; two-sided estimates [Cao-Verbitsky 2017]; existence of weak solutions, (WMP)-kernels [Quinn-Verbitsky 2018] .

4. Negative exponents: $q < 0$, only $\sigma = \pm \partial_{\Omega}(x)^{-\beta}$ ($\beta > 0$) $\partial_{\Omega}(x) = \text{dist}(x, \partial \Omega)$ [Dupaigne-Ghergu-Radulescu 2007].

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

Nonlinear integral inequalities

The proofs of Theorem 8 and Theorem 9 are given below. Let Ω be locally compact (possibly totally discrete), $\sigma \in \mathcal{M}^+(\Omega)$, $K \geq 0$ a kernel on $\Omega \times \Omega$. Consider the nonlinear inequality

$$
u(x) \geq Au(x) + 1 \quad d\sigma - a.e. \text{ in } \Omega,
$$

where $\mathcal A$ is the nonlinear map

$$
\mathcal{A}u=\mathsf{K}\Big(g(u)d\sigma\Big),\quad 1\leq u<+\infty\,\,d\sigma-a.e.
$$

Here $g : [1, a) \rightarrow (0, +\infty)$, is non-decreasing, continuous, where $a \in (1, +\infty]$. Let $g(a) = \lim_{t \to a^-} g(t) \in (0, +\infty]$, and extend *g* from [1, *a*] to [1, $+\infty$], by setting $g(t) := g(a)$ for $a \le t \le +\infty$.

Our goal: sharp lower estimates of *u*, better than the trivial $u > 1$.

We assume $\alpha := g(1) > 0$. In the case $\alpha = 0$, a simple example: $g(t) = \log t$ ($t \ge 1$), $u \equiv 1$ shows no self-improving estimates.

Nonlinear integral inequalities

(continuation)

Remark. Since $\alpha = g(1) > 0$, WLOG we assume $\alpha = 1$, so that

$$
g\colon [1,\infty]\to [1,+\infty],\quad g(1)=1.
$$

It is convenient to define a new measure:

$$
d\nu = g(u) d\sigma, \text{ so that } K\nu = Au,
$$

and a new function $\phi: [0, +\infty] \to [1, +\infty]$ continuous non-decreasing,

$$
\phi(t) = g(t+1), \quad \phi(0) = 1.
$$

Observe that since $u \geq Au + 1$, we have

$$
d\nu = g(u)d\sigma \geq g(\mathcal{A}u+1)d\sigma = \phi(K\nu) d\sigma.
$$

Iterating the preceding inequality, we obtain

$$
d\nu \geq \phi(K\nu) d\sigma \geq \phi\big(\mathsf{K}\big(\phi(\mathsf{K}\nu)\,d\sigma\big)d\sigma\big) \geq \ldots.
$$

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

Nonlinear integral inequalities (continuation)

Notice that $K\nu > K\sigma$, since

 $\phi(0) = g(1) > 1.$

Then ϕ ($K\nu$) $\geq \phi$ ($K\sigma$), and consequently,

$$
u\geq 1+K\nu\geq 1+K\Big(\phi(K\nu)d\sigma\Big)\geq\ldots\geq 1+K\sigma_j,
$$

where $j = 1, 2, \ldots$, and σ_j is defined by induction: $\sigma_0 = \sigma$, and

$$
d\sigma_j=\phi(K\sigma_{j-1})\,d\sigma,\quad j\ge 1.
$$

We next prove a series of lemmas in order to estimate

$$
K\sigma_j=K\left[\phi(K\sigma_{j-1})\,d\sigma\right],\quad j=1,2,\ldots.
$$

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

A key real variable (rearrangements) lemma

Lemma (rearrangements)

Let (Ω, σ) *be a* σ *-finite measure space, and let* $a = \sigma(\Omega) \leq +\infty$. Let $f: \Omega \to [0, +\infty]$ be a measurable function. Let $\phi: [0, a) \to [0, +\infty)$ *be a continuous, monotone non-decreasing function, and set* $\phi(a) := \lim_{t \to a^-} \phi(t) \in (0, +\infty]$. Then the following inequality holds:

$$
\int_0^{\sigma(\Omega)} \phi(t) dt \leq \int_{\Omega} \phi(\sigma(\{z \in \Omega: f(z) \leq f(y)\})) d\sigma(y).
$$

Proof: Reduction to discrete case, rearrangement in non-decreasing order.

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q (Ŷ

A key potential theory (integration by-parts) lemma

If ϕ : $[0, a) \rightarrow [0, +\infty)$ is non-decreasing continuous, we can extend it to $[0, +\infty]$ by $\phi(t) := \lim_{s\to a^{-}} \phi(s)$ for $t \in [a, +\infty]$. Here $a \in [0, +\infty]$. So WLOG we may assume ϕ is defined on $[0, +\infty]$.

Lemma (by-parts)

Suppose $\nu \in \mathcal{M}^+(\Omega)$, $x \in \Omega$. Let $a := \nu(\Omega) \in (0, +\infty]$. Suppose **K** *is a non-negative* (WMP)-kernel with $\mathfrak{b} > 1$, and $\phi: [0, +\infty] \to [0, +\infty]$ is non-decreasing, continuous. Then $\int K \nu(x)$ 0 $\phi(t)$ d $t\leq \mathcal{K}$ $\sqrt{ }$ ϕ (b $K\nu)$ d ν $\overline{1}$ (*x*)*.*

Idea of the proof: Fix $x \in \Omega$. Use the rearrangements lemma with $d\nu = K(x, \cdot) d\sigma$, $f(y) = K\nu(y)$, and apply the (WMP) appropriately. The details are given below.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ◆ 9 Q (º

Proof of the by-parts lemma

Fix $x \in \Omega$, and suppose first $K\nu(x) < \infty$. WLOG assume that $K\nu(x) > 0$. For any $y \in \Omega$, set

$$
E_y = \{ z \in \Omega : \ K \nu(z) \leq \ K \nu(y) \}.
$$

Clearly,

$$
K\nu_{E_y}(w)\leq K\nu(w)\leq K\nu(y)\quad\text{for all }w\in E_y.
$$

Hence by the (WMP) applied to ν_{E_v} (WLOG assume E_y is compact),

$$
K\nu_{E_y}(w) \leq b K\nu(y)
$$
 for all $w \in \Omega$.

In particular, with $w = x$,

$$
K\nu_{E_y}(x) = \int_{E_y} K(x,z) d\nu(z) \leq b K\nu(y).
$$

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (V

Proof of the by-parts lemma (continuation)

Let $f(y) = K\nu(y)$, then $E_y = \{z \in \Omega : f(z) \leq f(y)\}$. Now let $d\sigma(y) = K(x, y) d\nu(y)$, so that $\sigma(\Omega) = K\nu(x)$. Then by the rearrangements lemma and the preceding estimate,

$$
\int_0^{K\nu(x)} \phi(t) dt \leq \int_{\Omega} \phi \Big(\int_{E_y} d\sigma(z) \Big) d\sigma(y)
$$

=
$$
\int_{\Omega} \phi \Big(\int_{E_y} K(x, z) d\nu(z) \Big) K(x, y) d\nu(y)
$$

\$\leq K \Big[\phi \Big(b K\nu \Big) d\nu \Big] (x).

. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations International Mune 2021 33 / 44

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q ⊙

Proof of the by-parts lemma

(continuation) In the remaining case $K\nu(x) = +\infty$, let us show that *K* $\sqrt{ }$ ϕ (b $K\nu)$ d ν i (x) = $+\infty$ as well. Denote by E the set of all points $y \in \Omega$ for which $K\nu(y) \leq 1$ (assume WLOG *E* is compact). Then $K\nu_{E}(y) \leq 1$, for all $y \in E$.

Hence, by the **(WMP)** applied to ν_F ,

 $K\nu_E(w) \leq b$ for all $w \in \Omega$.

In particular, $K\nu_E(x) \leq b$, and so

 $K\nu_{F^c}(x)=+\infty.$

Notice that $K\nu(y) > 1$ for all $y \in E^c$. Thus,

$$
K\Big[\phi(\mathfrak{b}K\nu)d\nu\Big](x) \geq K\Big[\phi(\mathfrak{b}K\nu)d\nu_{E^c}\Big](x) \geq \phi(\mathfrak{b})K\nu_{E^c}(x) = +\infty.
$$

Iterated by-parts lemma

Suppose $\phi: [0, +\infty) \to [0, +\infty]$ is a non-decreasing continuous function. For $\nu \in M^+(\Omega)$, let $f_1 := K\nu$, $d\nu_1 := \phi(f_1) d\nu$, and

$$
f_k := K\left(\phi(f_{k-1})d\nu\right), \quad k = 2, 3, \ldots,
$$
 (29)

$$
d\nu_k := \phi(f_k) d\nu = \phi(K\nu_{k-1}) d\nu, \quad k = 2, 3, \dots \qquad (30)
$$

Consequently, $f_1 = K\nu$, $f_2 = K\nu_1 = K(\phi(K\nu)d\nu)$, and

$$
f_k = K \nu_{k-1} = K \left(\phi [K(\cdots [\phi(K\nu) d\nu] \cdots) d\nu] d\nu \right).
$$

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ │ 글 │ K 9 Q (Y

Iterated by-parts lemma

Lemma (iterations)

Let $\nu \in \mathcal{M}^+(\Omega)$, K , ϕ satisfy the assumptions of the preceding Lemma. *Set*

$$
\psi(t):=\phi(\mathfrak{b}^{-1}t),\quad t\geq 0.
$$

Then for all $x \in \Omega$,

$$
\psi_j\left(K\nu(x)\right)\leq K\nu_j(x),\quad j=1,2,\ldots,
$$

where $d\nu_j = \phi(K\nu_{j-1})d\nu$ are defined by iterations, and

$$
\psi_j(t):=\int_0^t\psi\circ\psi_{j-1}(s)ds,\quad \psi_0(t):=t,\quad t\geq 0.
$$

Proof: Repeated use of the (WMP) and the by-parts lemma. See details in [Grigor'yan-Verbitsky 2020], Lemma 2.7.

K □ ▶ K 部 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (Ŷ

Corollary: $\phi(t) = t^q$, $q > 0$

The following is immediate from the iterations Lemma.

Corollary (special case)

Suppose $\nu \in \mathcal{M}^+(\Omega)$, and *K is a (WMP)-kernel with* $\mathfrak{b} \geq 1$ *. If* $q > 0$, *then, for all* $x \in \Omega$ *and* $j > 1$ *,*

$$
\left[K\nu(x)\right]^{1+q+\cdots+q^j}\leq c(q,j)\,b^{q(1+q+\cdots+q^{j-1})}K\nu_j(x),
$$

where

$$
c(q,j) = \prod_{k=1}^{j} (1 + q + \cdots + q^{k})^{q^{j-k}}.
$$

In particular, in the case $q = 1$ *, for all* $x \in \Omega$ *and* $j > 1$ *we have*

$$
\left[K\nu(x) \right]^{j+1} \leq (j+1)! \, \mathfrak{b}^j \, K\nu_j(x).
$$

Remark. A direct proof by induction gives constants that grow too fast.

June
$$
2021
$$
 37 / 44

Proof of Theorem 8 $(0 < q < 1)$ Let $u > K(u^q d\sigma) d\sigma$ -a.e. For $a > 0$, set $E_a = \{ y \in \Omega : u(y) > a \}.$ Let $d\nu = \chi_{E_a} d\sigma$. Suppose $u(x) \geq K(u^q d\sigma)(x)$, where $x \in \Omega$. Then $u(x) \geq K(u^q d\sigma)(x) \geq a^q K \nu(x), \quad x \in \Omega.$

Iterating this inequality, as in the iterated potential theory lemma, we obtain

$$
u(x)\geq a^{q^{k+1}}K\nu_k(x),
$$

where ν_k is defined by (30) with $\phi(t) = t^q$, i.e., $d\nu_1 = (K\nu)^q d\nu$,

$$
d\nu_k := (K\nu_{k-1})^q d\nu, \quad k = 2, 3, \ldots.
$$

Hence, by the Corollary,

$$
u(x) \geq c(q,k)^{-1} a^{q^{k+1}} b^{-q(1+q+\cdots+q^{k-1})} (K\nu(x))^{1+q+\cdots+q^k}.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

(continuation)

Notice that, since $0 < q < 1$,

$$
c(q,k) = \prod_{j=1}^k (1+q+\cdots+q^j)^{q^{k-j}}
$$

$$
< \prod_{j=1}^k (1-q)^{-q^{k-j}} < (1-q)^{-(1-q)^{-1}}.
$$

Consequently,

$$
u(x) \geq (1-q)^{(1-q)^{-1}} a^{q^{k+1}} b^{-q(1+q+\cdots+q^{k-1})} \left(K\nu(x)\right)^{1+q+\cdots+q^k}
$$

Letting $k \to +\infty$, we obtain

$$
u(x) \geq (1-q)^{(1-q)^{-1}}b^{-\frac{q}{1-q}}\left(K\nu(x)\right)^{\frac{1}{1-q}}.
$$

Finally, letting $a \rightarrow 0^+$ yields (23) by the monotone convergence theorem. **◆ロト→伊ト→モト→モト 草**

.

 $A d \sim$

Integral inequalities for nondecreasing nonlinearities

Let $g : [1, a) \rightarrow [1, +\infty)$ be a nondecreasing, continuous function. We set

$$
F(t) = \int_1^t \frac{ds}{g(s)}, \quad t \ge 1.
$$
 (31)

Here *F* is defined on $[1, \infty)$. The inverse function F^{-1} is defined on $[0, a)$, and takes values in $[1, \infty)$, where

$$
a := \int_{1}^{+\infty} \frac{ds}{g(s)}.
$$
 (32)

The following theorem is deduced from the iterations lemma and some ODE techniques.

 Ω

(□) (司) (□) (□) (□)

Integral inequalities for nondecreasing nonlinearities

Theorem 10 (lower estimate)

Let $\sigma \in \mathcal{M}^+(\Omega)$, and let *K* be a (WMP)-kernel on Ω with constant $\mathfrak{b} \geq 1$. Let $\mathbf{g}: [1, +\infty) \to [1, +\infty)$ be nondecreasing, continuous. If $Au = K(g(u)d\sigma)$, and $u \geq Au + 1$ $d\sigma$ -a.e., then

$$
u(x) \geq 1 + \mathfrak{b}\left[F^{-1}\left(\mathfrak{b}^{-1}K\sigma(x)\right) - 1\right],\tag{33}
$$

for all $x \in \Omega$ *such that* $Au(x) + 1 \le u(x) < +\infty$, where necessarily

$$
\mathfrak{b}^{-1}K\sigma(x) < a := \int_1^{+\infty} \frac{ds}{g(s)}.\tag{34}
$$

Remark. We will give below a proof of Theorem 10. A similar proof of Theorem 11 for noninreasing *g* will be omitted.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

Special cases

We now consider some special cases of Theorem 10 for $g(t) = t^q$.

Corollary

Let q > 0*. Under the assumptions of Theorem 10, suppose u satisfies*

$$
u\geq K(u^q d\sigma)+1\quad d\sigma
$$

If $q \neq 1$, then the following inequality holds:

$$
u(x)\geq 1+b\Big[\Big(1+(1-q)\mathfrak{b}^{-1}K\sigma(x)\Big)^{\frac{1}{1-q}}-1\Big],
$$

where necessarily
$$
K\sigma(x) < \frac{b}{q-1}
$$
 if $q > 1$,

for all $x \in \Omega$ *such that* $K(u^q d\sigma)(x) + 1 \le u(x) < +\infty$. If $q = 1$, then

$$
u(x) \geq 1 + b\left(e^{b^{-1} K \sigma(x)} - 1\right).
$$

Integral inequalities for nonincreasing nonlinearities

Theorem 11 (upper estimate)

Let $\sigma \in \mathcal{M}^+(\Omega)$, and let **K** be a (WMP)-kernel (with constant $\mathfrak{b} \geq 1$). *Let* $g: (0,1] \rightarrow [1,+\infty)$ *be nonincreasing, continuous on* $(0,1]$ *. Set*

$$
F(t)=\int_t^1\frac{ds}{g(s)},\quad 0\leq t\leq 1.
$$

If $Au = K(g(u) d\sigma)$, and $0 \le u \le -Au + 1$ $d\sigma$ -a.e., then

$$
u(x)\leq 1-b\,\left[1-F^{-1}\Big(\mathfrak{b}^{-1}K\sigma(x)\Big)\right],
$$

and the following necessary condition holds:

$$
K\sigma(x)<\mathfrak{b}\, \mathsf{F}(1-\mathfrak{b}^{-1})=\mathfrak{b}\, \int_{1-\mathfrak{b}^{-1}}^{1} \frac{ds}{g(s)},
$$

for all $x \in \Omega$ *such that* $0 < u(x) \leq -\mathcal{A}u(x) + 1$.

Integral inequalities in special cases

We now consider the special case $g(t) = t^q$, $q < 0$.

Corollary

Let q < 0*. Under the assumptions of Theorem 11, suppose u satisfies*

$$
0\leq u\leq -K(u^q d\sigma)+1\quad d\sigma
$$
-a.e.

Then the following inequality holds:

$$
0 < u(x) \leq -\mathfrak{b}\left[\left(1+(1-q)\mathfrak{b}^{-1}K\sigma(x)\right)^{\frac{1}{1-q}}-1\right]+1,
$$

where necessarily
$$
K\sigma(x) < \frac{\mathfrak{b}}{1-q} \Big[1-(1-\mathfrak{b}^{-1})^{1-q}\Big],
$$

for all $x \in \Omega$ *such that* $0 < u(x) \leq -K(u^q d\sigma)(x) + 1$.